
ISR develops, applies and teaches advanced methodologies of design and analysis to solve complex, hierarchical,
heterogeneous and dynamic problems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the Glenn L. Martin Institute of Technol-
ogy/A. James Clark School of Engineering. It is a National Science Foundation Engineering Research Center.

Web site http://www.isr.umd.edu

I R
INSTITUTE FOR SYSTEMS RESEARCH

TECHNICAL RESEARCH REPORT

Key Establishment in Heterogeneous Self-Organized Networks

by Gelareh Taban, Rei Safavi-Naini

TR 2007-6

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
Key Establishment in Heterogeneous Self-Organized Networks

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of Maryland,College Park,MD,20742

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
The original document contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

18. NUMBER
OF PAGES

17

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Key Establishment in Heterogeneous Self-Organized Networks

Gelareh Taban1 � and Rei Safavi-Naini2

1 University of Maryland, College Park, gelareh@umd.edu
2 University of Calgary, rei@cpsc.ucalgary.ca

Abstract. Traditional key pre-distribution schemes in sensor and ad hoc networks rely on the existence of
a trusted third party to generate and distribute a key pool. The assumption of a single TTP however can
be very strong in practice, especially when nodes belong to different domains and they come together in an
ad hoc manner. Other important motivations to omit a TTP include preservation of privacy in a network
as well as reducing the required knowledge base for the usage of sensor networks. In this work, we show the
shortcomings of the previous approaches [3, 13] in terms of both efficiency and security. By incorporating a
heterogeneous network, we show that we can dramatically reduce the load on resource constrained devices
while also increasing their security. We also propose a new strengthened security model for self-organized
ad hoc networks and evaluate the security of our protocol in this model. We evaluate the correctness of the
protocol and show that we can achieve network connectivity with very high probability.

1 Introduction

Traditional ad hoc and sensor network settings generally assume a trusted third party (TTP) who is trusted
with the keying information and enables secure delivery of keys to the network principals and/or nodes. Security
associations, such as authentication of nodes or securing communication channels, are then bootstrapped using
this information. In key pre-distribution schemes, the TTP allocates keys to each node prior to deployment either
randomly from a key pool [8, 5], or by using a well-defined combinatorial structure such as a t-design [10] that
ensures the key subsets allocated to the nodes satisfy certain properties.

However, the assumption of a single TTP can be restrictive in scenarios where the network is self-organized and
formed without prior planning. In the following we list some of the immediate applications that require distribution
of trust.

1. In disaster response scenarios for example, a network may be formed with members belonging to different
administrative domains. Furthermore, it might be impossible to access an outside authority due to the lack of
preexisting infrastructure or inability to contact off-site systems [12]. In such life-threatening situations, it is not
acceptable to deny data from a legitimate principal that might save someone’s life. Therefore in such scenarios, a
‘best-effort’ security model might be appropriate, making strong guarantees when a single trusted third party can
be established and making weaker guarantees when no TTP can be assumed.

2. In combat situations it is essential to allow members of a coalition to join and form collaborative groups. In such
dynamic coalitions there is typically no single TTP prior to or during deployment.

3. Existence of a TTP is in immediate conflict with privacy enhancing applications. As sensor and ad hoc testbeds
have been deployed, it has become clear that user privacy can be easily compromised as a side effect to seemingly
innocuous applications [4]. For example a humidity sensing network can also be used to monitor activity in a room
as the human body effectively alters the room humidity. Therefore by removing the presence of an all knowing
authority (i.e. the TTP), communication can be made private to the restricted user set.

4. Finally, to allow the wide adoption of sensor and ad hoc networks in everyday scenarios, it is desirable to reduce
the required knowledge base of network owners. Customers should be able to purchase a set of nodes that are usable
upon purchase without requiring the presence of a network administrator. Therefore the node manufacturer can
install public data in the nodes that can bootstrap future security associations.

� Research was sponsored by the U.S. Army Research Laboratory and the U.K. Ministry of Defence and was accomplished
under Agreement Number W911NF-06-3-0001. The views and conclusions contained in this document are those of the
author and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Army
Research Laboratory, the U.S. Government, the U.K. Ministry of Defence or the U.K. Government. The U.S. and U.K.
Governments are authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright
notation hereon.

In the following we focus on the problem of group key distribution in self-organized ad hoc and sensor networks
where no single point of trust exists. A group key allows nodes to securely communicate with each other and
participate in collaborative tasks. The dynamic property of the network allow new nodes to join or exiting nodes
to leave the group. This is an essential mechanism in applications such as 1 and 2 listed above. We consider
heterogeneous networks consisting of two types of nodes: typical low performance sensor nodes and more powerful
nodes with more computation and communication resources. It has been recently shown [7, 1] that networks that
consist of homogeneous nodes cannot scale well and also have lower performance compared to networks that
include a number of more powerful nodes. Introducing more powerful nodes also improves reliability and lifetime
of the network [1]. Furthermore [14] showed that pairwise communication security in the presence of a TTP is not
necessarily sacrificed if a key distribution scheme leverages the existence of more capable nodes.

1.1 Related Work

The first work on key pre-distribution in ad hoc network without a TTP is due to Chan [3]. In this construction
each group member individually selects his keys from a common public key pool in a specified way. The aim of the
protocol is to probabilistically construct a Cover Free Family (CFF) that will ensure shared keys between nodes.
After the key selection phase, nodes follow a shared key discovery protocol that uses homomorphic encryption to
discover nodes’ shared keys. Chan showed that his proposed protocol allows any two nodes to communicate securely
with a high probability and the system provides security against collusion attack. However, [15] showed that the
probability that the constructed structure is a CFF, is very low and so the protocol cannot achieve its suggested
goal.

The closest work to our scheme (in fact motivation of our work) is Luo et. al [13] which has been inspired
by Chan’s work. Luo et. al propose a probabilistic group key management protocol (referred to as LSBS) for ad
hoc networks and assume homogenous nodes. The objective of LSBS is to establish a common shared key for the
whole group. The protocol consists of three phases. In the first step, nodes agree on system parameters and a
public key pool. Then each node randomly selects a set of keys from the key pool in accordance with the protocol
specification, and performs a shared key discovery (SKD) protocol with each neighboring node to discover shared
keys. The group key is generated by special subsets of nodes called initiating groups (IG), and is distributed by
flooding the network. Authors show that the success probability of establishing a group key can be made very high
if the size of the key ring is chosen appropriately and keys are selected from a structured key pool according to a
specified strategy. Authors analyzed the security of the protocol against an eavesdropping adversary who tries to
guess the key ring of a node, or the secret key that is used to secure the communication of two nodes.

Shortcomings of LSBS protocol. Although LSBS protocol achieves its stated goal, in practice there are chal-
lenges that if not addressed makes the protocol impractical. The following is a list of the more stringent shortcomings
of the protocol.
1. LSBS implicitly assumes that a single IG is formed where in practice many IGs may simultaneously exist. In
fact our simulation results show that in a network of 1000 nodes, where each node has a key ring of size 150 keys,
we can form up to 100 IGs. To obtain a single group key for all nodes some mechanism for negotiation and/or
cooperation among IGs is required. Both these approaches3 however substantially increases the communication
and computation cost which is very undesirable in a resource constrained network. The solutions also needs to be
carefully designed to prevent security compromise.

2. The communication cost of the shared key discovery (SSD) phase of the protocol is O(l) where l is the size of
the key ring. LSBS requires a node u to execute the SSD protocol with all of its neighboring nodes. If on average a
node is in the neighborhood of d other nodes, a communication cost of O(d · l) per node is incurred. For networks
with battery powered nodes it is essential to reduce this cost in order to prolong network lifetime.

3. LSBS is analyzed using a simple threat model that does not take into account real life threats in a wide range of
application scenarios. The adversary is considered passive and can only eavesdrop on the communications. Given
that the key pool is public, the adversary’s objective is to either determine the node key or the link key that secures
the link between two nodes.

In sensor networks it is common to assume that the adversary can compromise a subset of nodes and obtain
the secret information of the nodes. Such information includes the key rings of the node and the keys that the
3 For example IGs may negotiate amongst themselves to determine a single IG that is responsible for group key generation.

Implementing a fair and democratic negotiation in general would be hard to implement. An alternative approach would
be to allow all IGs to contribute partial shares of the group key and distribute these shares to the rest of the network via
flooding.

nodes share with their neighbors. This latter information will reduce the effort required for finding the key rings of
uncompromised nodes, and/or the link keys for links between the compromised node and its neighbor nodes.

1.2 Our Contribution

In this paper, we propose a Layered Key Pre-Distribution (LKD) Scheme for networks of heterogenous nodes:
resource constrained nodes (level 2 or L2) and a small number of high performance nodes (level 1 or L1). L1 nodes
have more resources and are possibly better protected (e.g. use tamper proof hardware). LKD uses an unbalanced
distribution of keys, where L1 nodes are allocated a larger key ring. The L1-centric clusters that are formed result
in more efficient generation of group keys.

We give a probabilistic analysis of the protocol and show that the inclusion of a small number of more powerful
nodes in the network results in constant communication and computation cost, independent of the neighborhood
size of a node.

We support our evaluation of LSBS (e.g formation of multiple IGs) and our analysis of LKD by simulating
a network of 1000 nodes where approximately 6% of the nodes are more powerful. An interesting byproduct of
our simulation has been the uncovering of a number of details that must be addressed when the protocol is used
in practice. For example, a node may belong to multiple IGs and there must be an efficient decision strategy to
participate in a single one. Another example is how to ensure the neighborhood condition is satisfied for all the
nodes in an IG.

We next evaluate the security of the protocol in a strengthened security model. We argue that with a public
key pool and without a TTP, previous proposed threat models and security metrics such as network resiliency [5,
8], which assumed secret key pool and a TTP, are no longer valid. We update these definitions for our new system
and trust model and define a new security metric called neighbor resiliency. We analyze the security of both LKD
and LSBS under this new threat model. Our analysis shows that LKD achieves better security than LSBS against
node compromising adversaries because sensing nodes in LKD learn much less information about the nodes in their
neighborhood.

The paper is organized as follows: Section 2 describes our network and trust model; Section 3 introduces the
LKD protocol; Sections 4, 5 provide the correctness and the security analysis of the LKD protocol; Section 6
supports the theoretical analysis with simulation results. We also include theoretical and simulation analysis of
LSBS to point out its shortcomings. We provide concluding remarks and future directions in Section 7.

2 System Model

We consider the network to be fully self-organized, meaning that there is no infrastructure (hence no public key
infrastructure). Traditional network models considered for sensor models not only assume a homogeneous network
but also assume either a grid or a random graph [8, 5] model where all neighboring nodes are in communication
contact. A more realistic model takes into consideration the various signal-blocking barriers and interference sources
such as hills and buildings that exist in the deployed environment. In practice, deployed nodes are often segregated
into exclusive neighborhoods due to the features of the landscape [14]. Our model accounts for this by considering
a cluster based network, where sensor nodes form ad hoc groups around more powerful nodes which act as the
backbone of the network. Therefore the sensor nodes connect to the rest of the network through the powerful
‘gateway’ nodes.

We assume a heterogeneous sensor network of size n consisting of two types of nodes: sensing or level 2 (L2)
nodes which are resource constrained and have limited storage and energy capabilities and level 1 (L1) nodes
which are more capable, with larger memory, more powerful transceivers and energy source. As a result L1 nodes
can store larger key rings and other state data as well as communicate with a larger neighborhood of nodes. The
network consists of c L1 nodes and (n− c) L2 nodes. Example L2 nodes are small Berkeley Mica2 motes with 8-bit
4MHz processors and 128 KB memories [2]. L1 nodes can be more powerful nodes such as laptops, mobiles or other
portable devices. Many such devices have better physical protection against compromise, such as the use of tamper
resistance hardware. However for simplicity, we assume the same type of protection for L1 and L2 nodes. We also
assume that each node ui has a unique identifier i.

Trust Model. We assume that the network has no central authority or a single trusted third party. Each node
essentially acts as its own domain authority. Public information such as the key pool is available to all network
parties, including malicious parties.

Authentication. Since we do not assume any trusted third parties, it is impossible to establish strong authen-
tication and identification amongst network nodes. We weaken our requirements such that to control the join of

!"

!#

$%&’$()*+)*,-(.’

Fig. 1. A heterogenous sensor network with two types of nodes, L1 and L2.

malicious nodes to the group, we assume some auxiliary identification mechanism for nodes (e.g. node hardware).
Details of such a mechanism is outside the realm of our work.

3 Layered Key Pre-Distribution (LKD) Scheme

In this section we describe the LKD scheme to establish both pairwise and group keys in a self-organized network
that does not have a TTP. The heterogenous network consists of resource constrained nodes (L2) and more capable
nodes (L1) that contain a larger portion of the key pool than L2 nodes. It follows that L1 nodes are able to establish
secure links with a larger portion of the nodes. In each neighborhood, local (l, r)-secure groups are established where
l denotes the security level and r is the minimum number of nodes in the group. We will show later that r does
not effect the security of the protocol and is used for efficiency purposes. Local groups in a neighborhood together
generate a cluster group key which are exchanged to contributively generate a network group key. We ensure that
the key generated in each layer (i.e. local, cluster or network) is independent. The overall algorithm consists of the
following phases: initial setup, neighborhood discovery, cluster and group key generation, join and leave. Figure 2
the outline of the steps of the protocol.

Initial Setup. Nodes agree on network parameters and select keys rings.

Neighborhood Discovery. Nodes discover the node types in their neighborhood. If an L2 node discovers an L1
node as a neighbor, it executes the shared key discovery phase which consists of a private set intersection protocol.
A secure link can be established between the L1 and L2 nodes based on their shared keys. L1 nodes keep an
account of all the L2 nodes in their neighborhood by computing an incidence matrix.

Cluster and Group Key Generation. L1 nodes use the incidence matrix to assist their neighboring nodes to
form local (l, r)-secure groups. Each local group contributively generates a partial cluster and group key. The
cluster and group keys are thus generated democratically by a large portion of the neighborhood nodes.

Join. A newly deployed node joins the network.

Leave. A possibly malicious node departs from the network.

Fig. 2. Outline of LKD protocol.

3.1 Initial Setup

In this phase nodes agree on parameters used in the protocol. The system parameters include a public key pool
and its partition into κ blocks of size m each. The security parameter is l which defines the level of link security
by specifying the minimum number of keys two nodes need to share to establish a secure communication channel.
The size of the key rings of L1 and L2 nodes are also set to kA and kB .

We note that these parameters can either be set by the node manufacturers or during an initial setup phase
prior to deployment.
Distributed Key Ring Selection: A node ui randomly selects one key from each key block to form a key ring
{Ki

1,K
i
2, ...,K

i
k}, where k = kA for an L1 node and k = kB for an L2 node. Assume that kB is equal to the number

of blocks in the key pool, κ. Since kA > kB , an L1 node needs to choose more than one key from each block. We
define the following strategy for key ring selection of L1 nodes.

L1 node Key Selection:

– Let kA = tkB + s, where t, s ∈ Z. Select t keys from block 1 to (k − s).
– Select (t + 1) keys from blocks (k − s) + 1 to block k (in total s key blocks).

3.2 Neighborhood Discovery Phase

In this phase, L1 nodes initially send beacons identifying themselves as ‘L1’ nodes to their neighborhood nodes.
The beacon message for L1 node ui can take the simple syntax of < i, L1 > where i is the node identifier.

An L2 node ‘discovers’ an L1 node when it hears its beacon message. To establish a secure channel with the L1
and help populate L1’s incidence matrix, it runs a secure shared key discovery (SSKD) protocol, reminiscent of [3,
13]. This SSKD protocol is essentially a privacy preserving set intersection protocol that allows the two participating
parties to discover their shared keys from their individual key sets.

For L1 node vi, the incidence matrix Ii has k columns labeled by the node keys Ki
1, · · ·Ki

k, and one row for each
neighbor. Ii(j, t) = 1 if Ki

t is shared with node uj in the neighborhood of vi, and zero otherwise. The incidence
matrix of vi can be used to keep an account of the keys shared by the nodes in L1’s neighborhood, given that
the keys are shared with vi. This property is important as it maintains the optimal privacy for the neighboring L2
nodes. Specifically vi does not learn any information about the key ring of its neighboring nodes other than the
shared key information it learns during the execution of the SSKD protocol.

If an L2 node is not directly connected to an L1 node (i.e. it is isolated from an L2), it simply waits and performs
the join protocol after the key establishment protocol is complete.

In this step, L1 nodes also discover each other and establish an l-secure channel between pairs of nodes. This
communication network forms the backbone of the larger network.

Secure Shared Key Discovery (SSKD) Consider the case when node uj wants to discover the keys it shares
with node ui. Let ui have keys Ki

1,K
i
2, ...,K

i
l and uj have Kj

1 , ...,Kj
m, where l,m ∈ Z. Assume the existence of a

homomorphic encryption scheme, where Ek(m) denotes encrypting message m using key k. The SSD protocol is as
follows:

1. ui forms polynomial fi(x) = (x − Ki
1)...(x − Ki

l) and send to uj the encrypted coefficients, EKi
(·).

2. uj computes zg = EKi
(rfi(Kj

g)) using the homomorphic property of the encryption scheme, where r is a random
number. uj returns zg to ui.

3. ui decrypts zg to obtain rfi(Kj
g). If the value is zero, then they have a common key.

4. ui returns to uj an m-bit bitmap with 1 at bits where rfi(Kj
g) = 0 and 0 elsewhere.

In contrast to LSBS, our SSKD protocol requires the nodes to exchange an m-bit bitmap indicating the shared
keys of the participating nodes (step 4). The main reason for this inclusion is that unlike LSBS, in our protocol,
L1 nodes can select more than one key from each block. Therefore nodes must indicate which key in the block is
shared or not, using the bitmap. LSBS considers a homogeneous network where every node picks one key from each
key block.

Securing Bitmap Transmission A potential security leakage is the bitmap exchange step of the SSD, which
identifies to an eavesdropper the number of shared keys of two nodes. This can aid a smart adversary to compromise
a neighboring node which shares the most keys with a target node, as well as reducing the search space for the
channel securing key.

The following protocol takes advantage of the privacy preserving characteristics of a homomorphic encryption
scheme such as El Gamal [9]. We show that although El Gamal is a public key encryption scheme, our scheme
does not require the public key infrastructure (which inherently assumes a TTP) or the computationally expensive
computations generally associated with public key schemes. Therefore its use in our protocol is practical.

Assume node ui wants to privately send a k-bit bitmap b to node uj . We use the multiplicative homomorphic
properties of the El Gamal [9] encryption scheme for ui to send b to uj . Specifically this property is defined as:
EK(m1m2) = EK(m1) × EK(m2) where EK(m) is the encryption of m using key K.

Let the El Gamal public key of uj be (g, h) and the secret key be (x = loggh).

uj → ui: r, d ← {0, 1}∗; Send < C1, C2 >=< gr, hr · d >, (g, h)
ui → uj: r′ ← {0, 1}∗; Send < C3, C4 >=< C1g

r′
, C2h

r′ · m >
uj: bitmap b = C4

Cx
3 ·d

Node uj encrypts a dummy message d and sends to ui the ciphertext and its public key. ui multiplies the
bitmap with the ciphertext and randomizes the message using r′. Using its private key uj can decrypt the processed
ciphertext and obtain the bitmap. This protocol ensures that the bitmap remains private to ui, uj assuming the El
Gamal encryption scheme is secure.

By loading nodes with a set of random r values and associated gr, hr during the setup phase it is possible
to reduce the amount of computation needed to simply one exponentiation and two multiplications per node.
Furthermore we note that although we are using public key cryptography, we do not rely on the existence of a
PKI and therefore we preserve the distributed nature of the network. Finally, we point out that this step is only
performed once or twice by sensing nodes through out their lifetime. In fact by using the following strategy we can
reduce this step to be used only when necessary:

Strategy: Initiate this protocol if and only if there are shared keys. If there are no shared keys, simply send a
NULL message.

We emphasize that using the El-Gamal protocol to secure bitmap transmission is an optional step that can
still be omitted in order to conserve energy. That is, we trade security for efficiency. An optional symmetric key
protocol which achieves some measure of security as long as the adversary has not compromised any nodes is to
use a global secret key to privately transmit the bitmap.

3.3 Cluster and Group Key Generation

In this phase, L1 nodes vi use their incidence matrix Ii to assist the nodes in their neighborhoods to initiate local
(l, r) groups where a minimum of r nodes share l keys. This is done by finding a set of r rows R and at least
l columns L in the incidence matrix for which an (l, r)-secure subset can be formed. The formation of the local
groups allow vi to communicate to a group of nodes via multicast thus reducing communication. Also nodes in
local groups contribute to the formation of the cluster keys thus preventing the selection of weak keys.

Once this local (l, r) group is formed, vi informs the group members of their group membership using secure
channels. Local group members now can communicate securely using their secret group key KL, where KL =
KL

1 ⊕ ...⊕KL
l where {KL

1 , ...,KL
l } are the set of shared keys in the local group L. Each local group L contributively

generates a partial cluster key KL
C in order to democratically agree on a cluster key KC . We note that potentially

two L2 nodes which are not in direct communication can belong to the same local group. This is because they have
a smaller transmission range than the L1 nodes. In this case, the L1 node can be used as an intermediate routing
point to forward messages. It is also possible to reduce this form of routing if we assume a directed antenna for the
L1 nodes. Then the L1 node can group an (l, r) subset together if and only if they are in the same vicinity.

Cluster Key Generation. We require that all members of the local group L contribute in the generation of
the partial cluster key KL

C . To form a partial cluster key nodes in L:

1. For all ui ∈ L:
– ui randomly selects its key share si;
– ui encrypts EKL

(si) and broadcasts to L;
2. For all uj ∈ L, j �= i, ui decrypts DKL

(sj). The partial cluster key by group L is calculated as KL
C = s1⊕ ...⊕sc.

We note that L1 node vi can overhear all communications in its neighborhood since it also shares the local
group key. Once all partial cluster keys are generated, vi computes the final cluster key KC = KL1

C ⊕ ... ⊕ KLx

C

where { L1, ..., Lx } are the set of local groups formed in the neighborhood. vi can then transmit the final cluster
key to its neighborhood nodes using the secure local group keys.

Group Key Generation. The group key can be generated similar to the cluster key by requiring nodes to
select a key share for the group key along with the cluster key share. L1 nodes then exchange the partial group key
generated in their neighborhoods to arrive at the final group key.

3.4 Join

A newly deployed node ui can join the network by establishing an l-secure channel to a node uj which already
belongs to the secure group. uj essentially acts for ui as the ‘gateway’ to the network. To achieve forward security,
the cluster and group key of the cluster and whole group respectively, is renewed by applying a one way function
to the current session key. uj then forwards the new session key to ui using the secure channel. The nodes use the
previously described SSKD protocol to discover at least l shared keys and establish a secure channel. If they cannot
do so, ui contacts other nodes in its neighborhood. As a result the new node only knows the keys it shares with
the ‘gateway’ node as well as any previous nodes it had contacted prior to establishing the secure channel.

Similarly an L2 node which is isolated from the neighborhood L1 node due to either being out of the range of
the L1 node or by not being to establish a secure channel with L1 in the key establishment phase, can join the
group using the above protocol.

3.5 Leave and Node Revocation

If an L2 node ui decides to leave the group, the neighborhood L1 node vi can use its incidence matrix to determine
the keys that a departing node has in common with the other nodes in its neighborhood and if need be, purge these
keys. It then alerts the nodes in L, the local group of ui, to also purge their key rings. As a result, the departing
node no longer has any information regarding the key rings of the nodes in its neighborhood.

If the departing node is malicious, the cluster may decide to not only purge the keys but also to compute a
new cluster and group key. As such, vi randomly selects another local group L′ in its neighborhood and requests
the nodes in L′ to re-execute the cluster key generation protocol to generate KL′

C . The node vi then recomputes
the cluster and group keys and securely transmits them to the effected nodes. The new cluster and group keys are
independent of the old keys since KL′

C is a random value.
Note that the existence of the local groups allows the re-generation of the cluster and group key to be very effi-

cient. Furthermore by randomly selecting the local group, vi distributes the added computation and communication
load uniformly amongst the nodes in its neighborhood.

4 Correctness Analysis

In this section we show the correctness of the LKD protocol. We say that LKD is correct if the protocol allows the
‘backbone’ L1-network as well as the cluster of L2 nodes around an L1 node, to be connected and thus functioning
with a high probability. Later we verify our results by simulation. In the next section we analyze the security of
the protocol against both a passive and an active adversary.

In our theoretical analysis we limit the key ring size of L1 nodes kA = t · kB + s as follows (kB is the key ring
size of L2 nodes): t = 1, s = [0..kB]. In the following, we will first analyze the case where s = kB and then when s
can be assigned any value from [0..kB]. To establish an l-secure link, two nodes share at least l keys.

For readability purposes, in the rest of the paper we use the notation A and B to refer to L1 and L2 nodes
respectively.

4.1 Case 1: kA = 2kB, where s = kB

We have the following proposition, with proof provided in Appendix A.

Proposition 1. Let PB(r, l) denote the probability that r L2 nodes share l keys, PA,B(r, l) denote the probability
that a group of (r − 1) L2 nodes and one L1 node share at least l keys and PA,A(2, l) denote the probability of two
L1 nodes sharing l keys. Then, we have the following.

PB(r, l) =
k

l
mk(1−r)(mr−1 − 1)k−l (1)

PA,B(r, l) =
k

l
2lmk(1−r)(mr−1 − 2)k−l (2)

PA,A(2, l) =
(m − 2)(m − 3)

m(m − 1)

k

α,β
2α+β=l

k
α

k−α
β

2α+2β(m − 2)−α(m − 3)−(α+β) (3)

The probabilities above are derived by finding the probability that two nodes share a key in a key block and
then adding these independent events to obtain the appropriate binomial coefficients. The main difference between
PB(r, l) and PA,B(r, l) is the probability of sharing a key in a block, which changes from 1

m to 2
m . To find PA,A(2, l),

we need to consider the case when nodes share 0, 1 or 2 keys in a key block. In the above formula, α and β represent
blocks that share 2 and 1 keys respectively. We need not consider blocks that do not contribute any keys.

Figure 3(a) graphs the obtained probability equations, comparing the probabilities of two nodes establishing an
l-secure channel for different node types, when the key pool is made up of 200 blocks, with a block size of five keys.
We can see a rapid transition in the probability of establishing an l-secure channel for different l. For example,

! "! #!! #"! $!!
!

!%#

!%$

!%&

!%’

!%"

!%(

!%)

!%*

!%+

#

,-. /012342567108290:5;2<

=
13
/
7
/
><>
?:

@13/7/><>?:234205?7/<>56>,A2<!50B-102B67,,0<2/0?C00,2$2,3805
1D$;2. D";29D$!!

EE
FE
FF

!"#!"

!$#!"

!$#!$

(a) Two nodes

! "! #! $! %! &!
!

!’"

!’#

!’$

!’%

!’&

!’(

!’)

!’*

!’+

"

,-. /012342567108290:5;2<

=
13
/
7
/
><>
?:

@13/7/><>?:234205?7/<>56>,A2<!50B-102B67,,0<2/0?C00,212,3805
1D$;%;&;(2;2. D&;29D#!!

1D$
1D%
1D&
1D(

(b) (r − 1) L2 nodes and one L1 node

Fig. 3. Probability of (a) two nodes and (b) r nodes, establishing an l-secure channel, where kA = 2kB .

as can be seen in the graph, once l approaches 30 for two L2 nodes, the probability of establishing a secure link
rapidly drops off from 1 to 0.

Figure 3(b) generalizes the node pair to groups of r nodes. It is intuitive that establishing an l-secure channel
becomes less probable as the group size increases. We also note that when there is a high probability for l-secure
channel among r nodes, the probability of establishing a secure channel between two L1 nodes will be an even
higher value. It is also interesting to note that the phase transition becomes slower as the number of nodes in the
group increases.

4.2 Case 2: kA = kB + s, where s ∈ [0, kB]

Let set S consist of the s key blocks from which an L1 node selects two keys and let S̄ consist of the remaining
k − s key blocks.

Let PA,B(r, l) be the probability of r nodes (one L1 node and (r−1) L2 nodes) sharing at least l keys. Let Zx be
the event that r nodes share a key in a given block x. The probability that Zx occurs, is equal to ps for blocks x ∈ S,
and ps̄ for x ∈ S̄. Key collisions for each block can be modeled as independent Bernoulli trials. The generating
function for probabilities PA,B(r, l) is calculated as the product of two binomials with success probabilities of ps

and ps̄:
f(x) = (psx + (1 − ps))

s(ps̄x + (1 − ps̄))
k−s (4)

Proposition 2. The probability that the r nodes share exactly l keys is equal to the coefficient Cl of the xl term
in polynomial equation 4, and

PA,B(r, l) =

kB

i=l

Ci (5)

where Ci is the coefficient of the xi term in f(x) and kB denotes the size of the key ring of L2 nodes.4

Proposition 3. Let PA,A(2, l) be the probability of two L1 nodes sharing at least l keys. Let α, β, γ be non-negative
integers satisfying 2α + β + γ = l.

PA,A(2, l) =
α,β,γ

2α+β+γ=l

s
α

s−α
β

pα
2 pβ

1 ps−α−β
0 + k−s

γ
p̃γ
1 p̃k−s−γ

0 (6)

where pi is the probability of sharing i keys for the first s blocks and p̃i is the probability of sharing i keys for the
remaining k − s blocks.

This proposition is based on the fact that the first s blocks can contribute 0, 1 or 2 shared keys per block, and
the last (k − s) blocks can contribute 0 or 1 shared keys per block. In the above formulae, α represents blocks that
share 2 keys and β and γ represent blocks that share only 1 key in S and S̄ respectively.
4 Examples to illustrate how the above proposition can be used are provided in Appendix B.

! " # $ % & ’ () !*
*

*+!

*+"

*+#

*+$

*+%

*+&

*+’

*+(

*+)

!
,-.-"/-0-.-!*/-1 -.-%

231 45,-67-89:,5;-05<8/-=

>
,6
4
:
4
?=?
@<

8-.-!
8-.-"
8-.-#
8-.-%
8-.-(

!"#$%$&’&()*#+*,-%"&./*!*01),*$1(211.*%.*34*.#51*%.5*%.*36*.#517*+#""#$%"&"#$’"(")

(a) Two nodes

! " # $ % & ’ () !*
*

*+!

*+"

*+#

*+$

*+%

*+&

*+’

*+(

*+)

,

./0/#1/2/0/!*1/3 /0/#

453 67./89/:;<.7=/27>:1/?

@
.8
6
<
6
A?A
B>

:/0/!
:/0/"
:/0/#
:/0/%
:/0/(

!"#$%$&’&()*#+*,-%"&./*!*01),*$1(211.*%.*34*.#51*%.5*6"!47*38*.#51,9*+#"*#$%&’&#$(&)&*

(b) (r − 1) L2 nodes and one L1 node

Fig. 4. Probability of (a) two nodes and (b) r nodes, establishing an l-secure channel, where kA = 2kB + s.

Figure 4(a) graphs the probability of establishing an l-secure channel between an L1 node and an L2 node for
different values of s. The results confirm intuition by showing that as the key ring of an L1 node becomes larger,
the probability of a secure connection with a L2 node increases. A similar result is verified in Figure 4(b) when we
consider r nodes, consisting of one L1 node and (r − 1) L2 nodes.

In a more general version of this problem, a node can select extra keys from any block of its choosing, rather
than the first s blocks. It is intuitive that in this version of the problem, the probabilities of establishing an l-secure
channel do not increase to the same extent as the more special case presented above. We leave the analysis of this
problem as a future exercise.

The graphs presented in this section, allow a network administrator to choose appropriate values for the system
parameters. In the following section, we show how an increased key ring not only increases the probability of
establishing a secure channel (as shown), but also decreases the security of the system. It is therefore important
to achieve the proper balance between connectivity and security. Section 6 gives simulation results to confirm the
presented theoretical results.

5 Security Model and Analysis

5.1 Adversary Model

We analyze the security of LKD against two types of adversaries.

1. Passive Adversary (PA) with only access to public data (key pool), description of the protocol and transcript
of node communications.

2. Node Capturing Adversary (NCA) with access to all the information available to a passive adversary, and also
the private data of t nodes that it has captured.

Note that we do not allow an NCA adversary to interact with the nodes. That is we only consider the case when
the adversary uses its information to eavesdrop on others’ communication. The goal of both adversaries therefore,
is to learn the secret keys between nodes that are used to secure their links.

5.2 Security Model in Key Pre-distribution Systems

The security of traditional key pre-distribution schemes that assume the existence of a TTP [8, 5, 6, 11], are based
on the facts that (i) the keys in the key pool are exclusively secret to the TTP, (ii) nodes key ring are private, and
(iii) the link communication is confidential.

In this model an adversary cannot introduce a ‘new’ device into the network because even if there is no
authentication mechanism, it does not have access to the key pool. However by compromising legitimate nodes
and obtaining their key rings and/or identities, an adversary can gain entrance into the secure network. The more
nodes an adversary compromises, the more it learns of the key pool and the more effective an attack it can launch
against a target secure channel. This notion is captured by the resiliency of the protocol against node compromise,
where resiliency metric is defined to be “the fraction of links in the network a node-compromising adversary is able

to eavesdrop on, as a result of recovering keys from captured nodes”[5]. A protocol has stronger security if the
adversary is forced to compromise a larger percentage of the nodes to eavesdrop on a target channel.

Also, in [8, 5] information that an NCA obtains from captured devices combined with the key indices allows
him to gain information about the keys belonging to other network nodes.

5.3 Security Model in Self-Organizing Networks

The security of the SO protocols (such as LKD and LSBS) does not rest on the secrecy of the key pool; in fact, the
key pool is considered to be public information and can be accessed by the adversary. This means that if there are
no auxiliary means of authentication, the adversary can introduce a malicious node v with the aim of extracting
key information from a victim node u: v can choose a key ring and run SKD with u to find out a subset of keys
of u (that they share). It then can select a new key ring and repeat the protocol. After sufficient runs of this, v
can learn all the keys of u. This means that it is crucial to assume a method of node authentication that prevents
the adversary from introducing nodes of its choice. Since this is not the focus of our paper, we do not consider this
scenario and leave it for future work.

The security of the SO protocols is based exclusively on (i) the size of the key pool and (ii) the security of link
keys. In LKD, an NCA gains only local information from a compromised node; that is, it learns only the key ring
of the node and potentially any information it shares with nodes it associates with. In the case of LKD, a node
ui associates only with its neighboring nodes Ni, and by compromising ui an adversary learns not only the key
ring of ui but also the keys it shares with its neighboring nodes. Therefore by compromising ui, the adversary can
tighten its search space when attacking (i) a link between two nodes where at least one is neighbor to ui or (ii) the
key ring of a node neighbor to ui. We capture this notion in the following security parameter for the SO model:
Neighbor resiliency is defined as the fraction of the key pool the adversary can discard in its exhaustive key search
to attack a target secure channel, as a result of recovering keys from neighboring captured nodes. Another security
metric we consider is the advantage the adversary gains in determining the key ring of a node when it is in the
neighborhood of a compromised node.

In the following, we analyze LKD against first a passive adversary and then a node capturing adversary.

5.4 Analysis of Passive Adversary

An eavesdropping adversary cannot obtain any information about the keys, except to exhaustively guess at the
final shared key between nodes. This is because in the course of the key establishment protocol, no information
about the key ring of the nodes is leaked. The adversary knows that there are N = mk possible keys and at least l
keys from k different possible blocks are used to secure a link. Therefore, the search space for the attacker is equal
to:

k∑
t=l

(
k

t

)
ml (7)

Similarly, to determine the key ring of a node of size k, the adversary must exhaustively search
(
k
t

)
ml possibilities.

5.5 Analysis of Node Capturing Adversary in LSBS

A node capturing adversary obtains not only the node’s key ring but also the incidence matrix that contains key
information about its neighboring nodes. In particular, it learns how many keys are shared between the neighbors
and whether the captured node shares any of these keys on its key ring.

Consider three nodes ui, uj and uc. Assume ui ∈ Nc, ui ∈ Nj , and uc is a compromised node. Let k be the size
of the key rings of uc, ui, uj respectively. The goal of the adversary is to break the secret link between ui, uj .
Case 1: uc �∈ Nj

By compromising uc, the adversary obtained the following information: uc and ui share b keys and do not share
(kc − b). To guess the key ring of ui, the adversaries’ search space is reduced from mk to mk−b.

The search space to exhaustively guess l shared keys between ui and uj is reduced from
(
k
l

)
ml to

∑l
α=0

(
k−b
α

)(
b

l−α

)
mα.

We can easily see that the search space has been reduced because:

l

α=0

k − b

α

b

l − α
mα ≤

l

α=0

k − b

α

b

l − α
ml =

k

l
ml

Therefore the search space to break an l-secure link between ui and uj is equal to:

k

t=l

t

α=0

k − b

α

b

t − α
mα (8)

The neighbor-compromise resiliency can be obtained from Equations 7 and 8.

Case 2: uc ∈ Nj

The reduction in the search space of the adversary is even more significant when the adversary can compromise a
node in the neighborhood of both ui and uj . In this case, the incidence matrix stored in uc leaks how many keys ui

and uj share as well as the keys uc shares with either of these two nodes. Let bi (or bj) be the number of keys uc

shares with ui (or uj) and bi,j is the number of keys uc has in common with both ui and uj . Let � be the number
of keys ui and uj share, where � ≥ l (since ui and uj can establish an l-secure channel). Therefore, the search space
to break the security of an l-secure channel, has been reduced from Equation 7 to, where b = bi + bj − bi,j :

k

x=�

x

α=0

k − b

α

b

x − α
mα (9)

5.6 Analysis of Node Capturing Adversary in LKD

In contrast to LSBS, sensing nodes in LKD do not compute an incidence matrix. As a result a compromised L2
node uc in LKD does not leak any keying information about the nodes in the neighborhood of uc. Below we itemize
the information an adversary learns by compromising uc:

– The keys that uc has in common with the L1 node in its cluster, or if it is not connected to an L1 node, the
connecting L2 node.

– If it is part of an (l, r)-secure local group, only the keys it shares with all of them.

In both cases, the derived metrics are identical to the probabilities of Case 1 in Section 5.5. However the number
of links and nodes to which these reduced probabilities can be applied to has been decreased dramatically. This
is primarily because LKD does not require an L2 node to connect to every node in its neighborhood. Instead the
number of secure connections an L2 node needs to establish as well as the keys it shares with neighboring nodes
has been reduced to only those that are necessary.

In the event that an adversary compromises an L1 node and the L1 node does not have any tamper resistant
hardware, the adversary gains keying information about all the nodes in its neighborhood. In this case the adversary
gains as much information as in the LSBS protocol.

Since the majority of the nodes in the network are L2 nodes, we can conclude that on average the advantage
that an adversary gains by compromising nodes in LKD has been reduced and therefore LKD is more secure than
LSBS.

6 Simulation and Discussion

In this section, we use simulations to first highlight the shortcomings of LSBS in a practical setting, that is, the large
number of IG that are formed and the high communication cost that is incurred. We then show the correctness of
LKD protocol by examining the established connectivity against the protocol parameters. We conclude by showing
the improved efficiency of the scheme.

6.1 Network Architecture and Setup

The simulation assumes a static network of n = 1060 nodes, consisting of 60 L1 nodes and 1000 L2 nodes. This is
a reasonable assumption in a dense static network or a highly dynamic network when nodes move around but in a
bounded region (e.g a group of rescuers in an emergency situation or troops in a battlefield).

We assume that L1 nodes have twice the transmission range RA of L2 nodes RB . To guarantee network con-
nectivity and thus allow a large portion of the nodes to participate in the secure group communication, we use
the system parameter relationships derived by [8] based on the phase transition theory of Erdös and Rényi for

connected random graphs. For network connectivity, we require that the neighborhood of each L2 node include 40
other nodes. This is a reasonable assumption used by [8, 5, 14]. We also need to guarantee that the L1-network (the
network of L1 nodes) is connected. Using the area needed for 1000 L2 nodes where the neighborhood of each L2
node has on average 40 nodes, we use 60 L1 nodes where each L1 node is neighbor to 10–15 L1 nodes.5 6

At the beginning of the simulation, each node randomly selects a key ring of size kA = 300 for L1 nodes and
kB = 150 for L2 nodes. Nodes can establish an l-secure connection by sharing at least l keys.

6.2 LSBS Simulation

In our simulation of LSBS protocol we exclude the L1 nodes such that our network consisted of only 1000 L2 nodes.
Initiator groups (r, l)-IG are created if r neighboring nodes share l keys.

By implementing the protocol, we identified various practical concerns of IG formation which are not dealt with
in [13]. In the first place, all nodes in the neighborhood of a given node ui, may not be in transmission range.
For example, although ui might share the same l keys with neighbors uj and uk, it might not be able to create
a (3, l)-IG with them because uj and uk are not neighbors. Therefore to make an IG, nodes must ensure that all
potential nodes that share l keys are also neighbors. We implemented a simplified version of this condition in our
simulation by only considering nodes within RB/2 radius, where RB is the transmission range of a L2 node.

It is also possible that a node belongs to more than one IG, in which case it must choose to defect to only one
of the groups. We use the following defection rule in the simulation: if a node belongs to more than one IG, it
defects to the IG with the larger number of members. Making the IG as large as possible has three benefits: (i) less
iterations are needed in LSBS to propagate the group key to the rest of the group; (ii) more nodes contribute to
the group key and therefore the formation of the key is more democratic; (iii) the disbanded IG might no longer
contain enough members to create an IG and therefore we reduce the number of times the network is flooded.

Our result in Figure 5(a) show that as the number of shared keys needed to establish a secure channel decreases,
a larger number of initiator groups get created. The values plotted are the average numbers obtained when the
simulation is run 10 times using different seeds for the random function. For example, although for r = 4, l = 7 on
average only two IGs are formed, there were rounds where no IG was formed. Thus to form an IG with very high
probability, we must choose l = 6 or l = 5 in which case the number of IGs formed suddenly jumps to approximately
30 and 100. This means that to construct a group key, the network needs to be flooded 30 or 100 times, which is
very inefficient.

2 3 4 5 6 7 8 9
0

50

100

150

Number of Initiator Groups Formed Using Different Number of Shared Keys
m=5, k=150

number of shared keys, l

IG

 fo
rm

ed

r=4
r=5

(a)

2.5 3 3.5 4 4.5 5 5.5
0

20

40

60

80

100

120

140

160

180

block size, m

IG

 fo
rm

ed

of Initiator Groups Formed for Different Key Block Sizes
l=8, r=4, k=150

(b)

Fig. 5. Number of IGs created using (a) different number of shared keys l, (b) different key block sizes m.

Figure 5(b) shows the relationship between the number of IGs formed and the key block size m. Again we
noticed the jump from very small number of IGs (e.g. m = 5) to almost 50 IGs when m = 4. However we know

5 Note that we can choose a smaller density of L1 nodes than L2 nodes because the L1 nodes have a higher probability of
establishing a secure connection.

6 We emphasize that the node density we have assumed is an overestimation of the required density in order to not result
in a disconnected network. However by choosing a more refined network connectivity model or incorporating possible
deployment knowledge, we can decrease network density while still maintaining connectivity. This would result in lower
communication costs still.

that the larger the number of keys shared between two neighbors, the less resilient the protocol is against neighbor-
compromise (see Equation 8). It is thus important to select network parameters such that allow us to minimize the
number of IGs that get created but to also achieve a high degree of security against both an active and a passive
adversary.

For example, if we select network parameters, k = 150,m = 4, r = 4, l = 8 we obtain a good balance between
the number of initiator groups that are formed (around 35) as well as the resiliency of the network against an active
adversary. This means that to compute the final group key, the network is flooded with 35 different partial group
keys. Because flooding occurs through the secure links established between nodes, each node must perform all the
computation that is required to decrypt the received partial keys (received through secure links) and encrypt then
to be sent to other neighbors (secure send). Given that a node has on average 40 neighbors, it would therefore
encrypt and decrypt approximately 20 times each.

6.3 LKD Performance and Discussion

By introducing hierarchy in the LSBS scheme, we are able to better control not only the formation of the local and
cluster groups but also the distribution of the group keys. Figures 6(a) and (b) show the probabilities of connection
for different local group sizes as well how much of the neighborhood can establish a pairwise l-secure connection with
an L1 node. Our results show that with very high probability, we can achieve a connected network. In particular,
an L2 node can establish a secure connection with an L1 node with very high probability. Figure 6(c) graphs the
distribution of the size of the (l, r)-groups centering around each L1 node. Each group on average is made up of
one L1 node and 3 L2 nodes. We emphasize that the size of a group has no influence on the security of the group
key, rather it ensures a more democratic process since more nodes contribute to the calculation of the group key.

! " # $ % &! &" &# &$ &%
!

!’&

!’"

!’(

!’#

!’)

!’$

!’*

!’%

!’+

&

,-. /012342567108290:5;2<

=
13
/
>0
5?
7
/
<@5
6
25
0
A-
10
2A
3
,
,
0
A?
@3
,
B

=13/’234205?7/<@56@,C2<!50A-102A67,,0<2/0?D00,212,3805;29
E
F&)!

1F)

1F#

1F(

(a) One L1 node and (r − 1) L2 nodes

! "! #! $! %! &!!
!

!’&

!’"

!’(

!’#

!’)

!’$

!’*

!’%

!’+

&

,-. /012342567108290:5;2<

=
7
>?3
23
42
@
"
2,
0
?A
6
/
3
15

=7>?32342,0?A6/31?,A2@"2,380527,2@&2,3802B7,205>7/<?5627,2<!50B-102B3,,0B>?3,

(b)

!"# $ $"# % %"# # #"# & &"# ’ ’"#
(

#

)(

)#

!(

!#

$(

$#

%(

*+,-./0.12+3+43/5.65/789.5

:
/
7
2
3

;+<35+=73+/2./0.12+3+43/5.65/78<.>5/72?.@4AB.>!2/?-
CD)#(9.E D#9.FD&

(c)

Fig. 6. (a) Prob. of establishing an l-secure connection between r nodes (b) Ratio of neighboring L2 nodes with which an
L1 node can establish an l-secure channel. (c) Number of groups formed for different values of l.

Comparing the performance of LKD and LSBS protocols, the necessary resources of a sensing node is reduced
in LKD as:
Reduced communication load. The L2-network is no longer flooded with all the partial group keys due to the
clustering of the nodes and the management of the local (l, r) groups by the L1 nodes. In particular, each L2 node,
with a high probability, needs to only connect to the neighboring L1 node. Furthermore if it falls in an (l, r) group,
it needs to exchange O(r) number of messages to generate a partial cluster and group key. Therefore the number
of messages that a sensing node receives and transmits is no longer a function of the neighborhood size.
Reduced computation load. LKD avoids the need for each sensing node to perform multiple decryption and
re-encryptions when transporting the group key. In addition the management and decision making required for IG
formation has been avoided and made a responsibility of the powerful L1 nodes. In particular in LKD with a high
probability, each sensing node performs the SSKD protocol once with the neighboring L1 node. In contrast in LSBS
nodes executed the SSKD protocol with every node in their neighborhood (e.g. in our simulation, this would be 40
times).
Reduced storage space. In LKD sensing nodes do not store the incidence matrix which is of the order O(k · d)
where k is the key ring size and d is the size of the neighborhood. Nodes also do not need to keep an account of
the different local groups or IGs they belong to.

Finally we note that in LKD, the load on each L1 node is at most equal to the load on every node in LSBS.
Also, the number of times LKD floods the network of L1 nodes is in the same order as the number of floods of the
whole network for LSBS.

7 Concluding Remarks

Traditional solutions for key pre-distribution assume the existence of a single TTP. This assumption however can
be very strong in practice, especially when nodes belong to different domain and they come together in an ad hoc
manner, as in disaster response scenarios. In this work we showed the shortcomings of previous works [3, 13] in this
area using both theoretical analysis as well as simulation. We propose a new scheme that incorporates heterogeneous
nodes to ameliorate the previous shortcomings, whereby the load on resource limited nodes is reduced dramatically
while in fact improving their security against node-compromising adversaries. In the course of our security analysis
we pointed out a lack of security model for self-organized networks and thus presented a security model of key
distribution protocols in a self-organized ad hoc network.

Our theoretical and simulation analysis pointed to a number of future research directions. The adversary model
can be analyzed further, providing simulation results to compare with the theoretical results presented in this paper.
We need to also come up with a good communication model to ensure that we do not end up with a disconnected
graph. Finally, it is interesting to see how mobility of nodes can help ameliorate the lack of connectivity in the
network.

References

1. http:www.intel.com/research/exploratory/heterogeneous.htm.
2. Mica motes. http: www.xbow.com.
3. A. Chan. Distributed symmetric key management for mobile ad hoc networks. In Proc. of Annual Joint Conference of

IEEE Computer and Communication Societies, INFOCOM, volume 4, pages 2414–2424, March 2004.
4. H. Chan and A. Perrig. Security and privacy in sensor networks. In IEEE Computer, volume 36, pages 103–105, Oct

2003.
5. H. Chan, A. Perrig, and D. Song. Random key predistribution schemes for sensor networks. In Proc. of Symposium on

Security and Privacy, pages 11–14, May 2003.
6. W. Du, J. Deng, Y. Han, P. Varshney, J. Katz, and A. Khalili. A pariwise key predistribution scheme for wireless sensor

networks. ACM Transactions on Information and Systems Security, 8(2):228–258, May 2005.
7. X. Du and F. Lin. Improving routing in sensor networks with heterogeneous sensor nodes. In IEEE Vehicular Technology

Conference, pages 2528–2532, 2005.
8. L. Eschenauer and V. Gligor. A key management scheme for distributed sensor networks. In Proc. of 9th ACM Conference

on Computer and Communications Security, pages 41–47, Washington, D.C., USA, 2002.
9. T. El Gamal. A public-key cryptosystem and a signature scheme based on discrete logarithms. IEEE Transactions on

Information Theory, 31(4):469–472, July 1985.
10. J. Lee and D. R. Stinson. A combinatorial approach to key predistribution for distributed sensor networks. In Proc. of

IEEE Wireless Communications and Networking Conference, volume 2, pages 1200–1205, March 2005.
11. D. Liu and P. Ning. Location-based pairwise key establishments for static sensor networks. In Proc. of 1st ACM

Workshop on Security of Ad hoc and Sensor Networks, pages 72–82, Fairfax, Virginia, USA, 2003.
12. K. Lorincz, D.J. Malan, T.R.F. Fulford-Jones, A. Nawoj, A. Clavel, V. Shnayder, G. Mainland, M. Welsh, and S. Moulton.

Sensor networks for emergency response: Challenges and opportunities. IEEE Pervasive Computing, pages 16–23, Oct-
Dec 2004.

13. L. Luo, R. Safavi-Naini, J. Baek, and W. Susilo. Self-organized group key management for ad-hoc networks. In Proc. of
ACM Symposium on Information, Computer and Communications Security (AsiaCCS), 2006.

14. P. Traynor, H. Choi, G. Cao, S. Zhu, and T. La Porta. Establishing pair-wise keys in heterogeneous sensor networks.
In Proc. of Annual Joint Conference of IEEE Computer and Communication Societies, INFOCOM, volume 4, pages
2414–2424, March 2006.

15. J. Wu and R. Wei. Comments on “Distributed Symmetric Key Management for Mobile Ad hoc Networks” from
INFOCOM’04. Cryptology ePrint Archive, Report 2005/008, 2005. http://eprint.iacr.org/.

A Proof of Proposition 1

Proof. Let kA = 2kB , where t = 1, s = kB . Therefore, each L1 node (L2 node) picks two keys (one key) from each key
block. For clarity purposes, we will first concentrate on the probability of sharing a key in a single block. Later, we use this
probability to calculate the probability of sharing l keys in multiple blocks and thus prove Proposition 1.

Consider two nodes, ui and uj , that independently pick i and j keys from a key block of size m. Let pi,j(2, l) denote the
probability that ui and uj share l keys in this block, where l ≤ min(i, j).

If i = j = 1, then there are m possible choices for the key and m2 different ways for the two nodes to select their keys.
So, p1,1(2, 1) = 1

m
.

For i = 2, j = 1, assume the keys selected are of the form (i1, i2) and j1 for nodes ui and uj respectively. (i1, i2) can be
chosen in m

2
possible ways and j1 can take on m possible values. The two nodes have a common key if j1 = i1 or j1 = i2.

Now j1 = i1 for m possible values and for each i1, i2 takes on (m − 1) possible values. Therefore, the probability of having
a common key in each block is:

p2,1(2, 1) =
m(m − 1)

m m
2

=
2

m
(10)

For i = 2, j = 2, assume the keys selected are of the form (i1, i2) and (j1, j2) for nodes ui and uj respectively. ui and uj

will have:

– 0 shared keys: For the pair (i1, i2), there are m−2
2

possible pairs (j1, j2) with no shared keys; that is, pairs that exclude

(i1, i2). Therefore, p2,2(2, 0) =
(m−2

2)
(m

2)
.

– 1 shared key: A given pair of the form (i1, i2) has i1 common with m − 1 pairs, and i2 common with another m − 2

pairs. There are m
2

distinct pairs. Therefore, p2,2(2, 1) = 2(m−2)

(m
2)

.

– 2 shared keys: For a pair (i1, i2) there is exactly one pair (j1, j2) with two collisions. There are m
2

distinct pairs.
Therefore, p2,2(2, 2) = 1

(m
2)

.

We generalize the above equations for r nodes. Let pX1,...,Xr (r, l) denote the probability that r nodes, where each node
picks X1, ..., Xr keys respectively, all share l keys. We limit the possibilities to groups where all nodes only pick one key
per block or only one node picks two keys per block and the rest pick one key. This is because each L1 node creates groups
consisting of only L2 nodes.

If Xa = 1 where a ∈ [1, r], then there are m possible choices for the key and mr different ways for the two nodes to select
their keys. So, p1,...,1(r, 1) = 1

mr−1 .

For X1 = 2 and Xa = 1 for a ∈ [2, r], let xa
i denote key i of node ua. Then (x1

1, x
1
2) can be chosen in m

2
possible ways and

xa
1 for a ∈ [2, r], can take on mr possible values. The r nodes have a common key if x1

1 = ... = xr
1 or x1

2 = x2
1 = ... = xr

1. Now
x1

1 = ... = xr
1 for m possible values and for each such value, x1

2 takes on (m − 1) possible values. Therefore, the probability
of having a common key in each block is:

p2,1,...,1(r, 1) =
m(m − 1)

mr m
2

=
2

mr−1
(11)

Given the above probabilities of sharing l keys in one block for 2 nodes and r nodes, we now want to find the probability
of sharing l keys in k blocks. Let PB(r, l) be the probability that r L2 nodes share l keys and PA,B(r, l) be the probability
that (r − 1) L2 nodes and one L1 node share l keys. Because the probability of sharing a key in each block is independent,
we can use binomial coefficients to calculate below probabilities:

PB(r, l) =
k

l
τ l(1 − τ)k−l (12)

PA,B(r, l) =
k

l
λl(1 − λ)k−l (13)

where τ = p1,...,1(r, 1) and λ = p2,1,...,1(r, 1).

Finally, we look at the special case of the probability of two L1 nodes sharing l keys, PA,A(2, l). Each L1 node picks 2
keys from each block. Now let α and β be non-negative integers satisfying 2α + β = l. To find PA,A(2, l) we note that two
blocks can contribute 0, 1 or 2 shared keys.

This means that we have:

PA,A(2, l) =
α,β

2α+β=l

k

α

k − α

β
pA,A(2, 2)α · pA,A(2, 1)β pA,A(2, 0)k−α−β (14)

B Example of Proposition 2

In this section, we give an example of how Proposition 3 can be used to calculate the probability of r nodes sharing l keys.
Example 1: The probability of an initiating group of size r sharing exactly one key is:

PA,B(r, 1) = C1 =
s

1
pS(r, 1)s−1(1 − pS(r, 1)) · (1 − pS̄(r, 1))k−s + (1 − pS(r, 1))s · k − s

1
pS̄(r, 1)k−s−1(1 − pS̄(r, 1))

Example 2: The probability of an L1 node and a L2 node sharing exactly one key. We note that pS(2, 1) = pA,B(2, 1) = 2
m

and pS̄(2, 1) = pB,B(2, 1) = 1
m

as derived above. Therefore, we obtain:

PA,B(2, 1) = C1 =
s

1
pS(2, 1)s−1(1 − pS(2, 1)) · (1 − pS̄(2, 1))k−s + (1 − pS(2, 1))s · k − s

1
pS̄(2, 1)k−s−1(1 − pS̄(2, 1))

= s(
2

m
)s−1(

m − 2

m
) · (m − 1

m
)k−s + (

m − 2

m
)s · (k − s)(

1

m
)k−s−1(

m − 1

m
)

